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We study collective behavior of locally coupled limit-cycle oscillators with scattered intrinsic frequencies on
d-dimensional lattices. A linear analysis shows that the system should always be desynchronized up tod=4. On
the other hand, numerical investigation ford=5 andd=6 reveals the emergence of the synchronized(ordered)
phase via a continuous transition from the fully random desynchronized phase. This demonstrates that the
lower critical dimension for the phase synchronization in this system isdl =4.
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Up to date, much attention has been paid to the collective
behavior of coupled nonlinear oscillators since those systems
of oscillators have been known to exhibit remarkable phe-
nomena of synchronization[1]. Those phenomena have been
observed in a number of physical, biological, and chemical
systems, and understood rather well in terms of various
model systems. In the system of globally-coupled oscillators
such as the Kuramoto model[2,3], the mean-field(MF)
theory is valid and yields analytic results to unveil the phase
transition[2]. Systems of locally coupled oscillators, on the
other hand, have not been studied much even though local
coupling in the system is more realistic in nature. In some
existing studies[4–6] collective synchronization, in particu-
lar frequency entrainment, has been investigated. However,
even numerical results, as well as the analytic ones including
heuristic arguments, do not provide a clear answer about the
question of the lower critical dimension for the frequency
entrainment. Phase synchronization has been also studied in
the previous studies[7]; however, there are still many fun-
damental questions that are not answered.

In this Rapid Communication, we consider a system of
locally coupled oscillators ond-dimensional lattices and use
the relation with a typical model of growing surface, which
allows a linear analysis to show the absence of synchroniza-
tion up to d=4. On the other hand, numerical investigation
performed ford=5 and 6 reveals the emergence of the syn-
chronized(ordered) phase via a continuous transition, indi-
cating the lower critical dimension for phase synchronization
dl =4.

We begin with the set of equations of motion governing
the dynamics ofN-coupled oscillators located at sites of a
d-dimensional hypercubic lattice

dfi

dt
= vi − K o

jPLi

sinsfi − f jd, s1d

where fi and vi stand for the phase and the intrinsic fre-
quency of theith oscillatorsi =1,2, . . . ,Nd, respectively. The
intrinsic frequencies are assumed to be randomly distributed
according to the Gaussian distribution functiongsvd with
meanv0 and variance 2s. For simplicity, we setv0;0 with-
out loss of generality. The second term on the right-hand side

represents local interactions between theith oscillator and its
nearest neighbors the set of which is denoted byLi.

Without any interactionsK=0d, each oscillator evolves
with its own intrinsic frequency, resulting in that the system
becomes trivially desynchronized. ForK.0, the coupling
term favors locally ordered(synchronized) states and com-
petes against the randomizing force due to scattered intrinsic
frequencies. When the coupling is strong enough to create
globally ordered states, the system should exhibit collective
synchronization. We here focus on phase synchronization
which may be probed by the conventional phase order pa-
rameter

D ;K 1

N
Uo

j=1

N

eif jUL , s2d

wherek¯l denotes the average over realizations of intrinsic
frequencies. Phase synchronization is then identified by non-
zeroD in the thermodynamic limit.

Analytic results are available at the MF level. Namely, in
the case of globally coupled oscillators, where each oscillator
is coupled with every other one with equal strengthK /N, it is
known that phase synchronization emerges asD,sK−Kcdb

with b=1/2 near the critical coupling strengthKc
=2/pgs0d [2] while the correlation length diverges asj
,uK−Kcu−n with n=1/2 [8].

When the oscillators are locally coupled, the system has
been little investigated. Since the nonlinear nature of the sine
coupling term in Eq.(1) is the major obstacle toward analytic
treatment, we first suppose that, for sufficiently strong-
coupling strengthK, the phase difference between any near-
est neighboring oscillators is small enough to allow the ex-
pansion of the sine function in the linear regime. With the
appropriate continuum limit taken in space, the linearized
evolution equation for the phasefsx ,td reads

]f

]t
= vsxd + K¹2f + Os¹4fd, s3d

where vsxd are uncorrelated random variables, satisfying
kvsxdl=0 and kvsxdvsx8dl=2sdsx−x8d [9]. We also relax
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the constraint 0øf,2p and extend the range off to
s−` ,`d, for convenience.

With the irrelevant high order terms neglected, this equa-
tion reminds us of the celebrated Edwards-Wilkinson(EW)
equation[10], traditionally describing certain surface evolu-
tion, by interpreting the phasefsx ,td as the front height of
the growing surface. Note, however, that the noisevsxd is
generated not by conventional spatio-temporal disorder but
by so-called columnar disorder(with spatial dependence
only).

In the context of surface growth models, a central quantity
of interest is the surface fluctuation widthW defined by

W2std =
1

LdEL

ddxkffsx,td − f̄stdg2l, s4d

where L is the linear size of thed-dimensional latticesLd

=Nd and f̄std the spatial average of the phasefsx ,td. By
means of the Fourier transforms, one can easily solve Eq.(3)
to find in the long time limitsKt@L2d that the steady-state
surface width scales for largeL [8]

W2 , s2s/K2dL4−d, d , 4

. ss/4p2K2dln L, d = 4

, 2s/K2, d . 4. s5d

At any finite values ofK, the surface widthW thus diverges
as L→` for dø4 whereas it remains finite ford.4. This
indicates that the surface is always rough(except atK=`)
for dø4 and always smooth(except atK=0) for d.4.

It is also straightforward to derive the steady-state prob-
ability distribution [8]

Pfhfjg , expF− sK2/4sd E s¹2fd2ddxG . s6d

Notice that the Gaussian property of the probability distribu-
tion links W analytically to the phase order parameter via
D=expf−W2/2g. Therefore our results forW, translated into
the phase synchronization language, show that the oscillators
are always desynchronizedsD=0d for dø4 and always syn-
chronizedsDÞ0d for d.4 in this linearized model.

Our linear theory is valid in the strong-coupling regime;
as the weak-coupling regime is approached, the original
(nonlinear) system should be more disordered than the pre-
diction of the linear theory. This establishes that the full non-
linear system described by Eq.(1) should also be desynchro-
nized fordø4 at any finiteK. For d.4, it is reasonable to
expect a phase synchronization(roughening) transition at a
finite value ofK, although one may not exclude the possibil-
ity of either the full destruction of the synchronized phase at
any finite K or the absence of the desynchronized phase at
any nonzeroK.

Before investigating the full nonlinear system described
by Eq. (1), we consider another standard quantity in surface
growth models, the height-height correlation function
Csx ,td;kffsx ,td−fs0,tdg2l. In the linearized regime gov-
erned by Eq.(3), we find the steady-state behavior for small
x;uxu [8]

Csxd , s2s/K2dx2L2−d, d , 2

. ss/2pK2dx2ln L, d = 2

, s2s/K2dx4−d, d . 2. s7d

Note that fordø2 the correlationCsxd diverges with system
sizeL, which implies that the average nearest neighbor phase
(height) differenceG=ks¹fd2l1/2 is unbounded for any finite
K in the thermodynamic limit. As our linear theory is based
on the boundedness ofu¹fu, there is no range ofK where the
linear theory applies fordø2. In contrast, ford.2, G is
finite and the linear theory is self-consistent at least for large
K where GsKd&Os1d. We now examine the nonlinear ef-
fects due to the sine coupling in Eq.(1). Unlike in the lin-
earized case, phasef may not be bounded even in a finite
system but diverge eventually with a finite angular velocity,
once its intrinsic-frequency term wins over the nearest-
neighbor coupling term. In the weak-coupling regime(for
small K), theserunaway oscillators with scattered angular
velocities dominate, and their phases become completely
random to one another, leading to the behaviorD,N−1/2

=L−d/2. On the other hand, in the strong-coupling regime
where the linear theory applies,D vanishes exponentially for
d=3 and algebraically ford=4, with an exponent depending
on K [see Eq.(5)].

We integrate numerically Eq.(1) and measure the phase
order parameter at various values ofK andL for d=2 to 6.
For convenience, periodic boundary conditions have been
employed and 2s has been set equal to unity. We start from
the uniform initial conditionsfi =0d for a given set ofhvij,
chosen randomly according to the Gaussian distribution
gsvd,exps−v2/4sd, and measure the order parameterD av-
eraged over the data in the steady state, reached after appro-
priate transient timesKt@L2d. Here we have used Heun’s
method[11] to integrate up to 43104 time steps, with the
time stepdt=0.05, and also average over 100 independent
sets ofhvij. Figure 1 displays the numerical results for the
order parameter. Ford=2 and 3, it is clearly observed that
the order parameter decreases rapidly with the system size
and seemingly approaches zero in the thermodynamic limit
for any finite K. Detailed finite-size analysis[8] showsD
,L−d/2 in the weak-coupling regime, implying that phases
are completely random and the system is dominated by run-
away oscillators. Ford=2, this fully random phase extends
to the regime of largeK, while for d=3 the linear theory
predicting correlated phases[see Eq.(7)] appears to work for
largeK, namely, the data fit well toD,expf−ss /4p3K2dLg
for K.K0 with GsK0d<Os1d. Numerically, we find that
K0<Î2s /p [12]. The data ford=4 seem to suggest that for
large K, D remains finite even in the thermodynamic limit,
which contradicts our prediction based on the linear analysis.
To resolve this puzzle, we analyze our data carefully by
means of finite-size scaling, and show in Fig. 2 the log-log
plots of D versusL−1 at various values ofK. Manifested for
K&0.28 is the fully random phaseD,L−2. For K*0.40,D
still decreases algebraically withL (see the inset of Fig. 2)
D,L−dsKd. It is pleasing that our data forK*0.40 agree
perfectly with the prediction of the linear theory,dsKd
=s /8p2K2 from Eq.(5). This result confirms that there is no
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synchronized phase at any finiteK for d=4. It would be
interesting to explore the possibility of a phase transition
nearK<K0=Îs /4 between the fully random phase and the
critical phase described by the linear theory; this is currently
under investigation. Ford=5, it looks evident that there ex-
ists an ordered(synchronized) phase extended to finite val-
ues ofK. Similarly to thed=4 case, the log-log plots ofD
versusL−1 are drawn in Fig. 3. ForK&0.19, we find the
fully random phaseD,L−5/2. For K*0.21, on the other
hand, D, first decreasing slightly withL, eventually con-

verges to a nonzero value. In fact, forK*0.24, this saturated
value coincides perfectly well with the linear-theory value:
D=expf−s /12p2K2g. Note here that the linear theory breaks
down for K&K0=Îs /9<0.24 and the transition into the
fully random phase apparently occurs a little later atKc
<0.20. It may be very interesting to understand this phase
transition from the stability analysis in the weak-coupling
limit.

We next study the critical behavior near the synchroniza-
tion transition. In a finite system, we assume the finite-size
scaling relation

D = L−b/nffsK − KcdL1/ng, s8d

where the scaling function behavesfsxd,xb asx→ +` and
fsxd,const asx→0. At criticality, it leads to

DsKc,Ld , L−b/n. s9d

To estimate efficiently the exponentb /n and the transition
point Kc, we introduce the effective exponent

b/nsLd = − lnfDsL8d/DsLdg/lnsL8/Ld, s10d

which is expected to approach zero,b /n, andd/2 for K.Kc,
K=Kc, andK,Kc, respectively, asL→`.

The effective exponent ford=5, computed at various val-
ues ofK, is plotted in Fig. 4. The data forKø0.19 appar-
ently converge to the weak-coupling value 5/2, while those
for Kù0.21 converge to zero within statistical errors. Only
the data atK=0.20 appear to converge to a nontrivial value.
We thus estimate the critical coupling strengthKc
=0.200s5d and the exponent ratiob /n=1.6s3d.

To check the finite-size scaling relation directly, we plot
DLb/n versussK /Kc−1dL1/n in Fig. 5 and find that the data
for various values ofL andK are best collapsed to a curve
with choices ofKc=0.200s5d, b /n=1.4s3d, andn=0.45s10d,
which results inb=0.63s20d. As expected, the resulting scal-
ing function fsxd converges to a constant for smallx, and
diverges asxb for largex (see Fig. 5).

We summarize our results ford=5: b /n=1.5s3d , n
=0.45s10d , Kc=0.200s5d. Note the apparently substantial
deviations from the MF values,b /n=1 andn=1/2,although
the latter may not be totally excluded. In view of the argu-

FIG. 1. Behavior of the order parameterD with the coupling
strengthK, plotted in terms of exps−Kd, in systems of various size
L for (a) d=2, (b) d=3, (c) d=4, and(d) d=5. Symbol sizes corre-
spond to statistical errors of the data.

FIG. 2. Log-log plots ofD versusL−1 for d=4 at various values
of K. The data for largeK are shown in the inset for better visibility.
Lines are merely guides for eyes.

FIG. 3. Log-log plots ofD versusL−1 for d=5 at various values
of K. Lines are merely guides for eyes.
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ment for the MF nature[8], these apparent deviations are
rather unexpected and their origin is unclear at this stage.
Similarly, we find for d=6, b /n=1.0s3d, n=0.45s10d, and
Kc=0.158s5d, which seem to be consistent with the MF val-
ues.

In summary, we have explored the phase synchronization
phenomena in the system of locally coupled oscillators with
scattered intrinsic frequencies ond-dimensional lattices. A
linear analysis shows that the strong-coupling regime can be
described by the EW surface growth equation with columnar
disorder fordù3. It has been shown analytically that the
system is always desynchronized up tod=4, while numerical
integration fordù5 has demonstrated the emergence of the

synchronized(ordered) phase via a continuous transition
from the desynchronized phase. The lower critical dimension
for phase synchronization is thus given bydl =4, but the
critical behavior explored ford=5 and 6 does not give a
conclusive result for the upper critical dimension.
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strength. The best collapse is achieved withb /n=1.4s3d and n
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