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We study collective behavior of locally coupled limit-cycle oscillators with scattered intrinsic frequencies on
d-dimensional lattices. A linear analysis shows that the system should always be desynchronizeéd41pQa
the other hand, numerical investigation x5 andd=6 reveals the emergence of the synchronigedered
phase via a continuous transition from the fully random desynchronized phase. This demonstrates that the
lower critical dimension for the phase synchronization in this systedp=4.
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Up to date, much attention has been paid to the collectiveepresents local interactions betweenitheoscillator and its
behavior of coupled nonlinear oscillators since those systemsearest neighbors the set of which is denoted\hy
of oscillators have been known to exhibit remarkable phe- Without any interaction(K=0), each oscillator evolves
nomena of synchronizatigi]. Those phenomena have beenwith its own intrinsic frequency, resulting in that the system
observed in a number of physical, biological, and chemicabecomes trivially desynchronized. F&=>0, the coupling
systems, and understood rather well in terms of variouserm favors locally orderedsynchronizey states and com-
model systems. In the system of globally-coupled oscillatorpetes against the randomizing force due to scattered intrinsic
such as the Kuramoto mod¢P,3], the mean-field(MF)  frequencies. When the coupling is strong enough to create
theory is valid and yields analytic results to unveil the phaseylobally ordered states, the system should exhibit collective
transition[2]. Systems of locally coupled oscillators, on the synchronization. We here focus on phase synchronization
other hand, have not been studied much even though localhich may be probed by the conventional phase order pa-
coupling in the system is more realistic in nature. In someameter
existing studie§4—6] collective synchronization, in particu-
lar frequency entrainment, has been investigated. However,
even numerical results, as well as the analytic ones including A
heuristic arguments, do not provide a clear answer about the
question of the lower critical dimension for the frequency o S
entrainment. Phase synchronization has been also studied Y{1€ré{ - denotes the average over realizations of intrinsic
the previous studie7]; however, there are still many fun- frequer_10|es. Phase synchrqnlz_at_mn is then identified by non-
damental questions that are not answered. zeroA in the thermodynamic limit. _

In this Rapid Communication, we consider a system of Analytic results are avallable_at the MF level. Namely, in
locally coupled oscillators od-dimensional lattices and use the case of globally coupled oscillators, where each oscillator
the relation with a typical model of growing surface, which 1S coupled with every other one with equal streniith, it is
allows a linear analysis to show the absence of synchroniz&?0Wn that phase synchronization emergesias(K-K)”
tion up tod=4. On the other hand, numerical investigationWith  8=1/2 near the critical coupling strengthk,
performed ford=5 and 6 reveals the emergence of the syn=2/79(0) [2] while the correlation length diverges &s
chronized(ordered phase via a continuous transition, indi- ~ [K—K¢|™ with »=1/2[8].
cating the lower critical dimension for phase synchronization When the oscillators are locally coupled, the system has
d=4. been little investigated. Since the nonlinear nature of the sine

We begin with the set of equations of motion governingcoupling term in Eq(1) is the major obstacle toward analytic

the dynamics ofN-coupled oscillators located at sites of a treatment, we first suppose that, for sufficiently strong-
d-dimensional hypercubic lattice coupling strengttK, the phase difference between any near-

est neighboring oscillators is small enough to allow the ex-
doy . pansion of the sine function in the linear regime. With the
T _K-EA. sin(¢ = &), 1) appropriate continuum limit taken in space, the linearized
bt evolution equation for the phasi(x,t) reads

1
N , (2

N
> e
=1

where ¢, and w; stand for the phase and the intrinsic fre-
quency of thath oscillator(i=1,2, ... N), respectively. The
intrinsic frequencies are assumed to be randomly distributed
according to the Gaussian distribution functigfw) with
meanw, and variance &. For simplicity, we setso=0 with- ~ where w(x) are uncorrelated random variables, satisfying
out loss of generality. The second term on the right-hand sidéw(x))=0 and{w(X)w(x'))=208(x-x") [9]. We also relax

% = (0 + KV + O(V44), 3
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the constraint & ¢ <27 and extend the range op to C(x) ~ (20/K?)¥?L% M, d<2
(-20,), for convenience. N2 _

With the irrelevant high order terms neglected, this equa- = (o/2mKxInL, d=2
tion reminds us of the celebrated Edwards-Wilking&iwV) ~ (20/KA)X*0, d> 2. (7)
equation[10], traditionally describing certain surface evolu-
tion, by interpreting the phas¢(x,t) as the front height of
the growing surface. Note, however, that the naige) is
generated not by conventional spatio-temporal disorder b
by so-called columnar disordgwith spatial dependence
only).

In the context of surface growth models, a central quantit
of interest is the surface fluctuation widil defined by

Note that ford<2 the correlatiorC(x) diverges with system
sizeL, which implies that the average nearest neighbor phase
Jheighy differenceG={(V$)?'? is unbounded for any finite
K in the thermodynamic limit. As our linear theory is based
on the boundedness ¥ ¢|, there is no range df where the
>Jinear theory applies fod<2. In contrast, ford>2, G is
finite and the linear theory is self-consistent at least for large
] K where G(K)=O(1). We now examine the nonlinear ef-
1 — fects due to the sine coupling in E(L). Unlike in the lin-
WA = Ld d%(Lp(x,1) = o)), (4)  earized case, phast may not be bounded even in a finite
system but diverge eventually with a finite angular velocity,
whereL is the linear size of thal-dimensional latticeLY  once its intrinsic-frequency term wins over the nearest-
=N) and ¢(t) the spatial average of the phagéx,t). By neighbor coupling term. In the weak-coupling regirgfer
means of the Fourier transforms, one can easily solve®q. sSmall K), theserunaway oscillators with scattered angular
to find in the long time limit(Kt>L?) that the steady-state Velocities dominate, and their phases become completely

surface width scales for large [8] random to one another, leading to the behavior N2
=L"92, On the other hand, in the strong-coupling regime
W2 ~ (20/K?)LY Y, d< 4 where the linear theory applie4,vanishes exponentially for
~ (ol47KD)InL, d=4 d=3 and algebraically fod=4, with an exponent depending
on K [see Eq(5)].
~20/K?, d>4. (5 We integrate numerically Eq1l) and measure the phase

order parameter at various valueskofandL for d=2 to 6.
For convenience, periodic boundary conditions have been
employed and & has been set equal to unity. We start from

At any finite values oK, the surface widthW thus diverges
asL—x for d<4 whereas it remains finite faf>4. This

indicates that the surface is always rougicept atk =) the uniform initial condition(¢;=0) for a given set of w;},

for d=4 and always smoottexcept atK=0) for d> 4. h doml dina to the G ian distributi
It is also straightforward to derive the steady-state prop~0>€" Tandomily -according to the saussian distribution
ability distribution[8] d(w) ~exp—~w/40), ar_1d measure the order parametesv-
eraged over the data in the steady state, reached after appro-
5 5 o priate transient timgKt>L?). Here we have used Heun’s
Pl{#}] ~ exp = (K¥40) | (V°4)7dx|. (6)  method[11] to integrate up to % 10* time steps, with the
time stepst=0.05, and also average over 100 independent
Notice that the Gaussian property of the probability distribu-sets of{w;}. Figure 1 displays the numerical results for the
tion links W analytically to the phase order parameter viaorder parameter. Fai=2 and 3, it is clearly observed that
A=exd-W?/2]. Therefore our results fow, translated into  the order parameter decreases rapidly with the system size
the phase synchronization language, show that the oscillatoesnd seemingly approaches zero in the thermodynamic limit
are always desynchronizéd =0) for d<4 and always syn- for any finite K. Detailed finite-size analysif8] showsA
chronized(A # 0) for d>4 in this linearized model. ~L"%2 in the weak-coupling regime, implying that phases
Our linear theory is valid in the strong-coupling regime; are completely random and the system is dominated by run-
as the weak-coupling regime is approached, the originadway oscillators. Fod=2, this fully random phase extends
(nonlineay system should be more disordered than the preto the regime of large<, while for d=3 the linear theory
diction of the linear theory. This establishes that the full non-predicting correlated phasgsee Eq(7)] appears to work for
linear system described by Ed) should also be desynchro- largeK, namely, the data fit well ta ~ exf-(o/4m°K?)L]
nized ford=<4 at any finiteK. Ford>4, it is reasonable to for K>Ky with G(Kp) =O(1). Numerically, we find that
expect a phase synchronizaticoughening transition at a Ky~ 20/ [12]. The data fod=4 seem to suggest that for
finite value ofK, although one may not exclude the possibil- large K, A remains finite even in the thermodynamic limit,
ity of either the full destruction of the synchronized phase atwhich contradicts our prediction based on the linear analysis.
any finite K or the absence of the desynchronized phase alo resolve this puzzle, we analyze our data carefully by
any nonzerd. means of finite-size scaling, and show in Fig. 2 the log-log
Before investigating the full nonlinear system describedplots of A versusL™! at various values oK. Manifested for
by Eq. (1), we consider another standard quantity in surfacek <0.28 is the fully random phase~ L. For K=0.40,A
growth models, the height-height correlation functionstill decreases algebraically with (see the inset of Fig.)2
C(x,t)=([(x,t)—(0,1)]?). In the linearized regime gov- A~L"9K |t is pleasing that our data fok=0.40 agree
erned by Eq(3), we find the steady-state behavior for small perfectly with the prediction of the linear theory(K)
x= x| [8] =o/8m?K? from Eq.(5). This result confirms that there is no
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FIG. 3. Log-log plots ofA versusL™! for d=5 at various values
of K. Lines are merely guides for eyes.

verges to a nonzero value. In fact, & 0.24, this saturated
value coincides perfectly well with the linear-theory value:
A=exd-o/127°K?]. Note here that the linear theory breaks
down for K<K,=\0/9~0.24 and the transition into the
fully random phase apparently occurs a little laterkat
~0.20. It may be very interesting to understand this phase
transition from the stability analysis in the weak-coupling
limit.

(d) exp(-K) We next study the critical behavior near the synchroniza-

) _ _ tion transition. In a finite system, we assume the finite-size
FIG. 1. Behavior of the order paramet&rwith the coupling scaling relation

strengthK, plotted in terms of ex@-K), in systems of various size
L for (a) d=2, (b) d=3, (c) d=4, and(d) d=5. Symbol sizes corre- A=LP(K - KoL, (8)
spond to statistical errors of the data.

where the scaling function behavés) ~x? asx— + and

synchronized phase at any finite for d=4. It would be f(X)~const asx—0. At criticality, it leads to

interesting to_explore the possibility of a phase transition A(K L) ~ LB 9)
nearK =K,=\o/4 between the fully random phase and the @ '

critical phase described by the linear theory; this is currentlyTo estimate efficiently the exponegt v and the transition
under investigation. Fod=5, it looks evident that there ex- point K., we introduce the effective exponent

ists an orderedsynchronizeyl phase extended to finite val-

ues ofK. Similarly to thed=4 case, the log-log plots af Blv(L) == In[A(L")/A(L)JIn(L/L), (10
versusL™! are drawn in _Flg. 3. FoK=0.19, we find the \ypichis expected to approach zeg),y, andd/2 for K> K.,
fully random phaseA ~L™>2 For K=0.21, on the other K=K, andK <K_, respectively, a& — o.

hand, A, first decreasing slightly with., eventually con- The effective exponent fai=5, computed at various val-
ues ofK, is plotted in Fig. 4. The data fdK<0.19 appar-
ently converge to the weak-coupling value 5/2, while those
for K=0.21 converge to zero within statistical errors. Only
the data akK=0.20 appear to converge to a nontrivial value.
We thus estimate the critical coupling strengtk.
=0.2005) and the exponent ratig/ v=1.6(3).

To check the finite-size scaling relation directly, we plot
- ALA" versus(K/K.—-1)LY" in Fig. 5 and find that the data
] for various values of. andK are best collapsed to a curve
with choices 0fK.=0.2045), B/v=1.43), andv=0.4510),
which results in8=0.6320). As expected, the resulting scal-
ing function f(x) converges to a constant for small and
diverges ax® for largex (see Fig. 5.

We summarize our results fod=5: B/v=153), v

FIG. 2. Log-log plots ofA versusL™! for d=4 at various values =0.4510), K;=0.2005). Note the apparently substantial
of K. The data for larg& are shown in the inset for better visibility. deviations from the MF valueg/v=1 andv=1/2, although
Lines are merely guides for eyes. the latter may not be totally excluded. In view of the argu-
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FIG. 4. Effective exponens/ (L) versusL™* for d=5 at various FIG. 5. Data collapse ofAL#” against(K/K,~1)LY" in the
values ofK. log-log scale for various values of the system size and coupling

strength. The best collapse is achieved withv=1.43) and »
ment for the MF naturg8], these apparent deviations are =0.4510). The straight line has the slope 0.63, giving an estimation
rather unexpected and their origin is unclear at this stagef 5.

ilr?lcl)ailg%{gev]\cllr?i(cj:hfc:;ade;n(siolgl_{)g_(:iﬁ%%e;t_v(\)/.i?hatﬁ)e)'Malgtii/al- synchronized(ordered phase via a continuous transition

c ' from the desynchronized phase. The lower critical dimension
ues. ___for phase synchronization is thus given Hy=4, but the

In summary, we have explored the phase synchronizatiojica| pehavior explored fod=5 and 6 does not give a

phenomena in the system of locally coupled oscillators Withconclusive result for the upper critical dimension.
scattered intrinsic frequencies @hdimensional lattices. A
linear analysis shows that the strong-coupling regime can be We thank P. Grassberger for useful discussions at the ini-
described by the EW surface growth equation with columnatial stage of this work. This work was supported in part by
disorder ford=3. It has been shown analytically that the Grant No. 2000-2-11200-002-3 from the Basic Research Pro-
system is always desynchronized umito4, while numerical gram of KOSEF(H.P) and by the Ministry of Education
integration ford=5 has demonstrated the emergence of thehrough the BK21 PrograrM.Y.C.).
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